Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds

نویسندگان

  • Ajami, Monireh PhD Student in Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
  • Darvish, Maryam Molecular Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.Assistant Professor, Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
  • Islami, Maryam PhD in Medical Biotechnology, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
  • Soleimani, Masoud Associate Professor, Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
چکیده مقاله:

Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a practical approach. The purpose of this study was the expansion of HSCs together with UCB derived MSCs on a three-dimensional poly L- lactic acid coated with fibronectin. Materials and methods: In this experimental study, after isolation of CD133+ from UCB cells using MACS method, the purity of the isolated cells was carried out by flow cytometry. Then, the cells were seeded on PLLA scaffold coated with fibronectin in presence of mesenchymal cells (group I), the PLLA scaffold in presence of mesenchymal cells (group II), and PLLA scaffold (group III). The proliferation rate, colonization potential and bio-compatibility of the cells were studied using a hemocytometer, CFU assay, and MTT, respectively. Results: The cells co-cuthured with PLLA-Fn scaffold (group I) had a higher proliferation rate of CD133 stemness marker compared to other groups. Also, the colonization of the cells and scaffold׳s biocompatibility was significantly higher in this group compared to other groups. (P <0.05). Conclusion: The study proved that the optimal 3D culture system in PLLA scaffold coated with fibronectin co-cultured with MSCs could reproduce minimum differentiation of CD133 + cells.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads) subsequently, flowcytometry method was done to asses...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

Culture and differentiation of human bone marrow-derived mesenchymal stem cells in poly (L-lactic acid) scaffolds

Any information contained in this pdf file is automatically generated from digital material submitted to e-Poster by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ICRS's endors...

متن کامل

Transdifferentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Dopaminergic Neurons in a Three-Dimensional Culture

Introduction: The induction of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) toward dopaminergic neurons is a major challenge in tissue engineering and experimental and clinical treatments of various neurodegenerative diseases, including Parkinson disease. This study aims to differentiate HUC-MSCs into dopaminergic neuron-like cells. Methods: Following the isolation and charac...

متن کامل

Platelet-derived Microparticles increase the Expression of hTERT Gene in Umbilical Cord Mesenchymal Stem Cells

Background: Mesenchymal stem cells have been widely considered in clinical researches because of their self-renewality and differentiation into various tissues. Nevertheless, their limited in vitro life span, which occurs only after several divisions, makes some changes in these cells, which affects all of their characteristics and remarkably reduces their application. In this study, the effect...

متن کامل

Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood

Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 29  شماره 181

صفحات  1- 11

تاریخ انتشار 2020-02

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023